简要描述:气道阻力和肺顺应性检测系统ResistanceandCompliancePlethysmographs采用侵入式气道力学对老鼠的肺功能进行检测
联系电话:021-54377179
气道阻力和肺顺应性检测系统 Resistance and Compliance Plethysmographs 采用侵入式气道力学对老鼠的肺功能进行检测。
· 检测过程做一个有创型的手术;
· 检测大鼠、小鼠的多种肺功能参数,如:呼吸速率、潮气量到气道阻力和肺顺应性。
· 系统通过测量端口压、跨肺压或胸膜压以及气道中气体流速等参数,直接得出气道阻力、肺顺应性、潮气量等肺功能指标参数;
· 血压和心率的检测可以用来研究心血管反映,也可用来判断动物状态;
主要特点:
· 可选择多种给药方式(颈、尾静脉注射、雾化给药)
· 可同时检测多种参数
· 采用体积描记法,直接检测气流
· 可选配心血管参数检测模块
主要应用:
· 急性和慢性呼吸道功能障碍模型
· 综合评价的肺功能
系统采用了尾部外置的特殊描记器,可以通过尾静脉或颈静脉对动物进行注射给药,也可通过雾化的气溶胶进行吸入式给药。
具备多种给药方法:静脉注射或气溶胶
气道阻力与肺顺应性检测体积描计器
根据需要,可以额外选配心电测量功能:
· 心电图分析软件,允许用户使用特定主题的模板自定义算法。可以更准确的进行分析;
· eDacq ECG 还允许用户定义自己的 QT 校正因子;
· 可以通过传统的 ECG 导联或遥测获取信号;
· 目前正在开发 eDacq ECG 以利用新的公式来计算节拍间的不稳定性;
主要检测参数:
· 气道阻力 (有/无 插管阻力补偿)
· 动态顺应性
· 肋膜压变化
· Lung conductance
· 潮气量
· 累计体积
· 吸气时间
· 呼气时间
· 吸气流量
· 呼气流量
· 呼吸频率
· 每分通气量
· 其它参数
如需方式检测小动物的肺功能参数,可选择:
全身体积描记系统
如需检测更多肺功能参数,可选择:
多参数肺功能检测系统
参考文献:
1.Saunders S P, Moran T, Floudas A, et al. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity[J]. Journal of Allergy and Clinical Immunology, 2016, 137(2): 482-491.
2.Wiegman C H, Michaeloudes C, Haji G, et al. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease[J]. Journal of Allergy and Clinical Immunology, 2015, 136(3): 769-780.
3.Gregory L G, Mathie S A, Walker S A, et al. Overexpression of Smad2 drives house dust mite–mediated airway remodeling and airway hyperresponsiveness via activin and IL-25[J]. American journal of respiratory and critical care medicine, 2010, 182(2): 143-154.
4.Murdoch J R, Lloyd C M. Resolution of allergic airway inflammation and airway hyperreactivity is mediated by IL-17–producing γδT cells[J]. American journal of respiratory and critical care medicine, 2010, 182(4): 464-476.
5.Seiffert J, Hussain F, Wiegman C, et al. Pulmonary toxicity of instilled silver nanoparticles: influence of size, coating and rat strain[J]. PloS one, 2015, 10(3): e0119726.
6.Zhang P, Li F, Wiegman C H, et al. Inhibitory effect of hydrogen sulfide on ozone-induced airway inflammation, oxidative stress, and bronchial hyperresponsiveness[J]. American journal of respiratory cell and molecular biology, 2015, 52(1): 129-137.
7.Gustafsson Å, Jonasson S, Sandström T, et al. Genetic variation influences immune responses in sensitive rats following exposure to TiO2 nanoparticles[J]. Toxicology, 2014, 326: 74-85.
8.Bradley S J, Wiegman C H, Iglesias M M, et al. Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction[J]. Proceedings of the National Academy of Sciences, 2016, 113(16): 4524-4529.
9.Byrne A J, Weiss M, Mathie S A, et al. A critical role for IRF5 in regulating allergic airway inflammation[J]. Mucosal immunology, 2017, 10(3): 716-726.
10.Murdoch J R, Gregory L G, Lloyd C M. γδT cells regulate chronic airway inflammation and development of airway remodelling[J]. Clinical & Experimental Allergy, 2014, 44(11): 1386-1398.
:,
:
yuyanbio
:yuyanbio