简要描述:脑立体定位仪是神经解剖、神经生理、神经药理和神经外科等领域内的重要研究设备,脑立体定位仪用于对神经结构进行定向的注射、刺激、破坏、引导电极等操作,可用于帕金森氏病动物模型建立,癫痫动物模型建立,脑内肿瘤模型建立,学习记忆,脑内神经干细胞移植,脑缺血等研究
联系电话:021-54377179
品牌 | 玉研仪器 | 价格区间 | 面议 |
---|---|---|---|
产地类别 | 国产 | 应用领域 | 综合 |
玉研仪器自主研发脑立体定位仪十四年,适用于大鼠、小鼠等实验动物,经典十字操作臂实现精准定位,精度可达10微米,特制螺纹精密螺杆,稳固不晃动实现对特定脑区的精确定位,是神经环路研究、神经系统性疾病、神经药理等领域内的重要研究设备,广泛面向全国各大科研院校,医院,高新企业,药企,医疗机构等科研单位。
脑立体定位仪是神经解剖、神经生理、神经药理和神经外科等领域内的重要研究设备,脑立体定位仪用于对神经结构进行定向的注射、刺激、破坏、引导电极等操作,可用于帕金森氏病动物模型建立,癫痫动物模型建立,脑内肿瘤模型建立,学习记忆,脑内神经干细胞移植,脑缺血等研究。
脑立体定位仪是利用大小鼠颅骨外面的前囟点,即Bragma点,或其它参考点所规定的三维坐标系统,来确定皮层下某些神经结构的位置,通过固定在立体定位仪操作臂上的在特定三维坐标的神经结构的位置,钻孔打开颅骨,以便在非直视暴露下对其进行定向的刺激、破坏、注射药物、引导电位等研究。
数字型号的脑立体定位仪,能直观的显示出定位仪的三维坐标,并可以按键归零,移动操作臂后,显示特定位置的新的坐标,通过选配不同动物适配器可用于不同的小动物实验。
产品特点:
· 操作灵活、简便,标配大鼠适配器;
· 脑立体定位仪标尺是由激光雕刻,清晰易读,精确度为0.1mm;
· 脑立体定位仪操作臂移动范围(上下,左右,前后):三方向移动距离80mm;
· 垂直方向可90度转动,并随时锁定位置;
· 扩充能力很强,可增加操作臂,增加注射装置及等;
· 可以根据需要增加不同的固定器,用于多种动物;
具有以下优势:
· 标尺易读数
· 移动平滑
· 调节
· 电生理操作方便
· 配件多样,可选配各种动物适配器,麻醉罩以及
标准型大鼠定位仪的主要构造:
根据需求不同,有多种不同的型号可供选择:单臂型,双臂型,数显型,数控型,敬请。
多种型号可供选择:
标准型大鼠脑定位仪 型号:SA-100
数显大鼠脑定位仪 型号:SA-150
数显双臂大鼠脑定位仪 型号:SA-151
相关配件及可选配件:
大鼠门牙固定适配器 | 小鼠固定适配器 |
电极夹持器 | 电极、螺帽、注射器夹持器 |
电极、注射器夹持器 | 微量注射器 |
部分参考文献:
1. Albéri, L., Lintas, A., Kretz, R., Schwaller, B., & Villa, A. E. (2013). The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. Journal of neurophysiology, 109(11), 2827-2841.
2. Sonati, T., Reimann, R. R., Falsig, J., Baral, P. K., O’Connor, T., Hornemann, S., Aguzzi, A. (2013). The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 501(7465), 102-106.
3. Ali, I., O’Brien, P., Kumar, G., Zheng, T., Jones, N. C., Pinault, D., O’Brien, T. J. (2013). Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy. PLOS ONE, 8(6), e66962.
4. Bell, L. A., Bell, K. A., & McQuiston, A. R. (2013). Synaptic Muscarinic Response Types in Hippocampal CA1 Interneurons Depend on Different Levels of Presynaptic Activity and Different Muscarinic Receptor Subtypes. Neuropharmacology.
5. Bolzoni, F., Bączyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
6. Bolzoni, F., Bączyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
7. Babaei, P., Tehrani, B. S., & Alizadeh, A. (2013). Effect of BDNF and adipose derived stem cells transplantation on cognitive deficit in Alzheimer model of rats. Journal of Behavioral and Brain Science, 3, 156-161.
8. Gilmartin, M. R., Miyawaki, H., Helmstetter, F. J., & Diba, K. (2013). Prefrontal Activity Links Nonoverlapping Events in Memory. The Journal of Neuroscience, 33(26), 10910-10914.
9. Feng, L., Sametsky, E. A., Gusev, A. G., & Uteshev, V. V. (2012). Responsiveness to nicotine of neurons of the caudal nucleus of the solitary tract correlates with the neuronal projection target. Journal of Neurophysiology, 108(7), 1884-1894.
10. Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., Van der Valk, P., Kipp, M. (2012). Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia, 60(10), 1468-1480.
11. Girardet, C., Bonnet, M. S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Troadec, J. D. (2011). Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenol: A PGE2-independent mechanism.Toxicological Sciences, 124(1), 179-191.
12. Hruška-Plocháň, M., Juhas, S., Juhasova, J., Galik, J., Miyanohara, A., Marsala, M., Motlik, J. (2010). A27 Expression of the human mutant huntingtin in minipig striatum induced formation of EM48+ inclusions in the neuronal nuclei, cytoplasm and processes. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
13. Brooks, S., Jones, L., & Dunnett, S. B. (2010). A29 Frontostriatal pathology in the (C57BL/6J) YAC128 mouse uncovered by the operant delayed alternation task. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A10.
14. Yu, L., Metzger, S., Clemens, L. E., Ehrismann, J., Ott, T., Gu, X., Nguyen, H. P. (2010). A28 Accumulation and aggregation of human mutant huntingtin and neuron atrophy in BAC-HD transgenic rat. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
15. Baxa, M., Juhas, S., Pavlok, A., Vodicka, P., Juhasova, J., Hruška-Plocháň, M., Motlik, J. (2010). A26 Transgenic miniature pig as an animal model for Huntington’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A8-A9.
:,
:
yuyanbio
:yuyanbio