1) Alcaraz A J G, Baraniuk S, Mikulášek K, et al. Comparative analysis of transcriptomic points-of-departure (tPODs) and apical responses in embryo-larval fathead minnows exposed to fluoxetine[J]. Environmental Pollution, 2022, 295: 118667. 2) Di Cicco M, Di Lorenzo T, Fiasca B, et al. Effects of diclofenac on the swimming behavior and antioxidant enzyme activities of the freshwater interstitial crustacean Bryocamptus pygmaeus (Crustacea, Harpacticoida)[J]. Science of the Total Environment, 2021, 799:149461. 3) Wang X, Cheng E, Burnett I S, et al. Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions[J]. Scientific reports, 2017, 7(1): 17596. 4) Henry J, Rodriguez A, Wlodkowic D. Impact of digital video analytics on accuracy of chemobehavioural phenotyping in aquatic toxicology[J]. PeerJ, 2019, 7: e7367. 5) 刘慧杰, 王从锋, 刘德富, 等. 不同运动状态下鳙幼鱼的游泳特性研究[J]. 南方水产科学,2017, 13(2): 85-92. 6) Cruz-Rosa S, Pérez-Reyes O. Titanium Oxide Nanoparticles as Emerging Aquatic Pollutants: An Evaluation of the Nanotoxicity in the Freshwater Shrimp Larvae Atya lanipes[J]. Ecologies, 2023, 4(1): 141-151. 7) Rountos K J, Gobler C J, Pikitch E K. Ontogenetic differences in swimming behavior of fish exposed to the harmful dinoflagellate Cochlodinium polykrikoides[J]. Transactions of the American Fisheries Society, 2017, 146(5): 1081-1091. 8) Nay T J, Johansen J L, Habary A, et al. Behavioural thermoregulation in a temperature-sensitive coral reef fish, the five-lined cardinalfish (Cheilodipterus quinquelineatus)[J]. Coral Reefs, 2015, 34: 1261-1265.